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PREFACE

S
ystem dynamics deals with mathematical modeling and analysis of devices and

processes for the purpose of understanding their time-dependent behavior. While

other subjects, such as Newtonian dynamics and electrical circuit theory, also

deal with time-dependent behavior, system dynamics emphasizes methods for handling

applications containing multiple types of components and processes such as electrome-

chanical devices, electrohydraulic devices, and fluid-thermal processes. Because the

goal of system dynamics is to understand the time-dependent behavior of a system

of interconnected devices and processes as a whole, the modeling and analysis meth-

ods used in system dynamics must be properly selected to reveal how the connections

between the system elements affect its overall behavior. Because systems of intercon-

nected elements often require a control system to work properly, control system design

is a major application area in system dynamics.

TEXT PHILOSOPHY

This text is an introduction to system dynamics and is suitable for such courses com-

monly found in engineering curricula. It is assumed that the student has a background in

elementary differential and integral calculus and college physics (dynamics, mechanics

of materials, thermodynamics, and electrical circuits). Previous exposure to differen-

tial equations is desirable but not necessary, as the required material on differential

equations, as well as Laplace transforms and matrices, is developed in the text.

The decision to write a textbook often comes from the author’s desire to improve

on available texts. The decisions as to what topics to include and what approach to take

emerge from the author’s teaching experiences that give insight as to what is needed

for students to master the subject. This text is based on the author’s forty-four years of

experience in teaching system dynamics.

This experience shows that typical students in a system dynamics course are not yet

comfortable with applying the relevant concepts from earlier courses in dynamics and

differential equations. Therefore, this text reviews and reinforces these important topics

early on. Students often lack sufficient physical insight to relate the mathematical re-

sults to applications. The text therefore uses everyday illustrations of system dynamics

to help students to understand the material and its relevance.

If laboratory sessions accompany the system dynamics course, many of the text’s

examples can be used as the basis for experiments. The text is also a suitable reference

on hardware and on parameter estimation methods.

MATLAB R© AND SIMULINK R©1

MATLAB and Simulink are used to illustrate how modern computer tools can be

applied in system dynamics.2 MATLAB was chosen because it is the most widely

1MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

2The programs in this text are based on the following software versions, or higher versions: Version 9.6 of

MATLAB, Version 9.3 of Simulink, and Version 10.6 of the Control Systems Toolbox.

vii
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used program in system dynamics courses and by practitioners in the field. Simulink,

which is based on MATLAB and uses a diagram-based interface, is increasing in pop-

ularity because of its power and ease of use. In fact, students convinced the author to

use Simulink after they discovered it on their own and learned how easy it is to use! It

provides a useful and motivational tool.

It is, however, not necessary to cover MATLAB or Simulink in order to use the

text, and it is shown how to do this later in the Preface.

TEXT OVERVIEW

Chapter 1 introduces the basic terminology of system dynamics, covers commonly used

functions, and reviews the two systems of units used in the text: British Engineering

(FPS) units and SI units. These are the unit systems most commonly used in system

dynamics applications. The examples and homework problems employ both sets of

units so that the student will become comfortable with both. Chapter 1 also covers

some basic methods for parameter estimation. These methods are particularly useful

for obtaining numerical values of spring constants, damping coefficients, and other

parameters commonly found in system dynamics models. The chapter also contains

introductions to differential equations and to MATLAB, and it presents the first of the

text’s several case studies: design of motion-control systems. The material on function

identification and least-squares fitting, formerly in Chapter 1 in the third edition, is now

in Appendix C.

Chapter 2 covers differential equations in more depth, and develops the Laplace

transform method for solving differential equations with applications to equations hav-

ing step, ramp, sine, impulse, and other types of forcing functions. It also introduces

transfer function models.

Chapter 3 covers rigid-body dynamics, including planar motion. This chapter con-

tinues the motion-control case study by showing how to select a suitable motor and

gear system.

Chapter 4 covers modeling of mechanical systems having stiffness and damping,

and it applies the analytical methods developed in Chapter 2 to solve the models. This

chapter then introduces the second case study: design of vehicle suspensions.

Chapter 5 develops block diagrams and the state-variable model, which is useful

for certain analytical techniques as well as for numerical solutions. The optional sec-

tions of this chapter introduce Simulink, which is based on block-diagram descriptions,

and apply the chapter’s concepts using MATLAB. This chapter concludes with further

coverage of the vehicle suspension case study.

Chapter 6 treats modeling of electric circuits, operational amplifiers, electro-

mechanical devices, sensors, and electroacoustic devices. It also discusses how motor

parameters can be obtained, and it returns to the motion-control case study and shows

how to analyze motor and amplifier performance.

Part I of Chapter 7 covers fluid systems. Part II covers thermal systems. These

two parts are independent of each other. A background in fluid mechanics or heat

transfer is not required to understand this chapter, but students should have had

elementary thermodynamics before covering the material on pneumatic systems in

Section 7.5.

Chapters 8 and 9 cover analysis methods in the time domain and the frequency

domain, respectively.

Chapter 8 integrates the modeling and analysis techniques of earlier chapters with

an emphasis on understanding system behavior in the time domain, using step, ramp,
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and impulse functions primarily. The chapter covers step-response specifications such

as maximum overshoot, peak time, delay time, rise time, and settling time.

Chapter 9 demonstrates the usefulness of the transfer function for understanding

and analyzing a system’s frequency response. It introduces Bode plots and shows how

they are sketched and interpreted to obtain information about time constants, resonant

frequencies, and bandwidth. The chapter returns to the vehicle-suspension case study,

and shows how to use frequency response methods to evaluate suspension performance.

Chapters 10, 11, and 12 deal with a major application of system dynamics, namely,

control systems. Chapter 10 is an introduction to feedback control systems, including the

PID control algorithm applied to first- and second-order plants. The chapter concludes

with thorough coverage of feedback control applied to the motion-control case study.

Chapter 11 deals with control systems in more depth and includes design methods

based on the root locus plot and practical topics such as compensation, controller tun-

ing, actuator saturation, reset windup, and state-variable feedback, with emphasis on

motion-control systems. Chapter 12 covers series compensation methods and design

with the root locus plot and the Bode plot.

Chapter 13 covers another major application area, vibrations. Important practical

applications covered are vibration isolators, vibration absorbers, modes, and suspen-

sion system design. This chapter is now on the text website to allow room for the new

case studies in earlier chapters.

ALTERNATIVE COURSES IN SYSTEM DYNAMICS

The choice of topics depends partly on the desired course emphasis, partly on the stu-

dents’ background in differential equations and dynamics, and partly on whether the

course is a quarter or semester course.

Fluid and thermal systems are covered in Chapter 7, which has been shortened in

this edition. Some students may have had courses in fluid mechanics and heat transfer,

but probably have not been exposed to the system dynamics viewpoint, which focuses

on the analogies between fluid and thermal resistance and capacitance and the corre-

sponding electrical concepts. The theory and methods of the remaining chapters do not

depend on Chapter 7, but some examples do.

In the author’s opinion, a basic semester course in system dynamics should include

most of the material in Chapters 1 through 7, and Chapters 9 and 10. At the author’s

institution, the system dynamics course is a junior course required for mechanical engi-

neering majors, who have already had courses in dynamics and differential equations.

It covers Chapters 1 through 10, with brief coverage of Chapter 7 and Chapter 8, and

with some MATLAB and Simulink sections omitted. This optional material is then

covered in a senior elective course in control systems, which also covers Simulink, and

Chapters 11 and 12.

The text is flexible enough to support a variety of courses. The sections dealing

with MATLAB and Simulink are at the end of the chapters and may be omitted. If

students are familiar with Laplace transform methods and linear differential equations,

Chapter 2 may be covered quickly. If students are comfortable with rigid-body planar

motion, Chapter 3 may be used for a quick review.

GLOSSARY AND APPENDICES

There is a glossary containing the definitions of important terms, five appendices, and

an index. Appendices D and E are on the text website.
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Appendix A is a collection of tables of MATLAB commands and functions, organized

by category. The purpose of each command and function is briefly described in the tables.

Appendix B is a brief summary of the Fourier series, which is used to represent a

periodic function as a series consisting of a constant plus a sum of sine terms and cosine

terms. It provides the background for some applications of the material in Chapter 9.

Appendix C covers function identification, and shows how to use MATLAB to fit

models to scattered data using the least-squares method.

Appendix D is a self-contained introduction to MATLAB, and it should be read

first by anyone unfamiliar with MATLAB if they intend to cover the MATLAB and

Simulink sections. It also provides a useful review for those students having prior ex-

perience with MATLAB.

Appendix E covers numerical methods, such as the Runge-Kutta algorithms, that

form the basis for the differential equation solvers of MATLAB. It is not necessary to

master this material to use the MATLAB solvers, but the appendix provides a back-

ground for the interested reader.

Answers to selected homework problems are given following Appendix C.

CHAPTER FORMAT

The format of each chapter follows the same pattern, which is

1. Chapter outline

2. Chapter objectives

3. Chapter sections

4. MATLAB sections (in most chapters)

5. Simulink section (in most chapters)

6. Chapter review

7. References

8. Problems

This structure has been designed partly to accommodate those courses that do not

cover MATLAB and/or Simulink, by placing the optional MATLAB and Simulink ma-

terial at the end of the chapter. Chapter problems are arranged according to the chap-

ter section whose concepts they illustrate. All problems requiring MATLAB and/or

Simulink have thus been placed in separate, identifiable groups.

OPTIONAL TOPICS

In addition to the optional chapters (11, 12, and 13), some chapters have sections deal-

ing with material other than MATLAB and Simulink that can be omitted without af-

fecting understanding of the core material in subsequent chapters. All such optional

material has been placed in sections near the end of the chapter. This optional material

includes:

1. Function discovery, parameter estimation, and system identification techniques

(Sections 8.4 and 9.6)

2. General theory of partial-fraction expansion (Section 2.7)

3. Impulse response (Sections 2.6 and 4.6)

4. Motor performance (Section 6.6)

5. Sensors and electroacoustic devices (Section 6.8)
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DISTINGUISHING FEATURES

The following are considered to be the major distinguishing features of the text.

1. MATLAB. Standalone sections in most chapters provide concise summaries

and illustrations of MATLAB features relevant to the chapter’s topics.

2. Simulink. Standalone sections in Chapters 5 through 12 provide extensive

Simulink coverage not found in most system dynamics texts.

3. Parameter estimation. Coverage of function discovery, parameter estimation,

and system identification techniques is given in Sections 1.3, 8.4, 9.6, and

Appendix C. Students are uneasy when they are given parameter values such as

spring stiffness and damping coefficients in examples and homework problems,

because they want to know how they will obtain such values in practice. These

sections show how this is done.

4. Motor performance evaluation. Section 6.6 discusses the effect of motor

dynamics on practical considerations for motor and amplifier applications, such

as motion profiles and the required peak and rated continuous current and torque,

and maximum required voltage and motor speed. These considerations offer

excellent examples of practical applications of system dynamics but are not

discussed in most system dynamics texts.

5. System dynamics in everyday life. Commonly found illustrations of system

dynamics are important for helping students to understand the material and its

relevance. This text provides examples drawn from objects encountered in

everyday life. These examples include a storm door closer, fluid flow from a

bottle, shock absorbers and suspension springs, motors, systems with gearing,

chain drives, belt drives, a backhoe, a water tower, and cooling of liquid in a cup.

6. Case studies and theme applications. Two common applications provide

themes for case studies, examples, and problems throughout the text. These are

motion-control systems, such as a conveyor system and a robot arm, and vehicle

suspension systems.
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1C H A P T E R

Introduction

CHAPTER OUTLINE
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1.3 Developing Linear Models 11

1.4 Introduction to Differential Equations 17

1.5 A Case Study in Motion Control 21

1.6 MATLAB Review 28

1.7 Chapter Review 34

Problems 35

CHAPTER OBJECTIVES

When you have finished this chapter, you should be able to

1. Define the basic terminology of system dynamics.

2. Apply the basic steps used for engineering problem

solving.

3. Apply the necessary steps for developing a

computer solution.

4. Use units in both the FPS and the SI systems.

5. Develop linear models from given algebraic

expressions.

6. Use direct integration to solve dynamics problems

involving a differential equation in which the

derivative can be isolated.

7. Model and design a simple motion-control system

for a single rotational load.

8. Use MATLAB to perform simple calculations and

plotting, and use the MATLAB help system.

T his chapter introduces the basic terminology of system dynamics, which includes

the notions of system, static and dynamic elements, input, and output. Because

we will use both the foot-pound-second (FPS) and the metric (SI) systems of

units, the chapter introduces these two systems. Developing mathematical models of

input-output relations is essential to the applications of system dynamics. Therefore, we

begin our study by introducing some basic methods for developing algebraic models

of static elements. We show how to use the methods of function identification and

parameter estimation to develop models from data, and how to fit models to data that

have little scatter. ■

1
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2 CHAPTER 1 Introduction

1.1 INTRODUCTION TO SYSTEM DYNAMICS
This text is an introduction to system dynamics. We presume that the reader has some

background in calculus (specifically, differentiation and integration of functions of

a single variable) and in physics (specifically, free body diagrams, Newton’s laws

of motion for a particle, and elementary dc electricity). In this section we establish

some basic terminology and discuss the meaning of the topic “system dynamics,” its

methodology, and its applications.

1.1.1 SYSTEMS

The meaning of the term system has become somewhat vague because of overuse. The

original meaning of the term is a combination of elements intended to act together to
accomplish an objective. For example, a link in a bicycle chain is usually not considered

to be a system. However, when it is used with other links to form a chain, it becomes

part of a system. The objective for the chain is to transmit force. When the chain is

combined with gears, wheels, crank, handlebars, and other elements, it becomes part

of a larger system whose purpose is to transport a person.

The system designer must focus on how all the elements act together to achieve

the system’s intended purpose, keeping in mind other important factors such as safety,

cost, and so forth. Thus, the system designer often cannot afford to spend time on the

details of designing the system elements. For example, our bicycle designer might not

have time to study the metallurgy involved with link design; that is the role of the chain

designer. All the systems designer needs to know about the chain is its strength, its

weight, and its cost, because these are the factors that influence its role in the system.

With this “systems point of view,” we focus on how connections between the

elements influence the overall behavior of the system. This means that sometimes we

must accept a less-detailed description of the operation of the individual elements to

achieve an overall understanding of the system’s performance.

Figure 1.1.1 illustrates a liquid-filled tank with a volume inflow f (say in cubic

feet per second). The liquid height is h (say in feet). We see in Example 1.4.2 that

the functional relationship between f and h has the form f = bhm, where b and m are

constants. We would not call this a “system.” However, if two tanks are connected as

shown in Figure 1.1.2, this connection forms a “system.” Each tank is a “subsystem”

Figure 1.1.1 The effect
of liquid height h on the
out flow rate f .

h

f

Figure 1.1.2 Two connected tanks.

h1

f1

h2

f2
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f2f1

h1

h2

Subsystem 1
(Tank 1)

Subsystem 2
(Tank 2)

Figure 1.1.3 A system
diagram illustrating how the
two liquid heights affect
each other.

whose liquid height is influenced by the other tank. We can obtain a differential equation

model for each height by using the single-tank relationship f = bhm and applying the

basic physical principle called conservation of mass to express the connection between

the two tanks. This results in a model of the entire system.

We often use diagrams to illustrate the connections between the subsystems.

Figure 1.1.2 illustrates the physical connection, but Figure 1.1.3 is an example of a di-

agram showing that the height h1 affects the height h2, and vice versa. (The flow goes

from the higher height to the lower one.) Such a diagram may be useful for a nontechni-

cal audience, but it does not show how the heights affect each other. To do that, we will

use two other types of diagrams—called simulation diagrams and block diagrams—to

represent the connections between the subsystems and the variables that describe the

system behavior. These diagrams represent the differential equation model.

1.1.2 INPUT AND OUTPUT

Like the term “system,” the meanings of input and output have become less precise.

For example, a factory manager will call a meeting to seek “input,” meaning opinions

or data, from the employees, and the manager may refer to the products manufactured

in the factory as its “output.” However, in the system dynamics meaning of the terms,

an input is a cause; an output is an effect due to the input. Thus, one input to the bicycle

is the force applied to the pedal. One resulting output is the acceleration of the bike.

Another input is the angle of the front wheel; the output is the direction of the bike’s

path of travel.

The behavior of a system element is specified by its input-output relation, which

is a description of how the output is affected by the input. The input-output relation

expresses the cause-and-effect behavior of the element. Such a description, which is

represented graphically by the diagram in Figure 1.1.4, can be in the form of a table

of numbers, a graph, or a mathematical relation. For example, a force f applied to a

particle of mass m causes an acceleration a of the particle. The input-output or causal

relation is, from Newton’s second law, a = f∕m. The input is f and the output is a.

The input-output relations for the elements in the system provide a means of speci-

fying the connections between the elements. When connected together to form a sys-

tem, the inputs to some elements will be the outputs from other elements.

The inputs and outputs of a system are determined by the selection of the system’s

boundary (see Figure 1.1.4). Any causes acting on the system from the world exter-

nal to this boundary are considered to be system inputs. Similarly, a system’s outputs

are the outputs from any one or more of the system elements that act on the world out-

side the system boundary. If we take the bike to be the system, one system input would

be the pedal force; another input is the force of gravity acting on the bike. The outputs

System

Boundary

Inputs Outputs

Figure 1.1.4 A system
input-output diagram,
showing the system
boundary.
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may be taken to be the bike’s position, velocity, and acceleration. Usually, our choices

for system outputs are a subset of the possible outputs and are the variables in which we

are interested. For example, a performance analysis of the bike would normally focus

on the acceleration or velocity, but not on the bike’s position.

Sometimes input-output relations are reversible, sometimes not. For example, we

can apply a current as input to a resistor and consider the resulting voltage drop to be

the output (v = iR). Or we can apply a voltage to produce a current through the resistor

(i = v∕R). However, acceleration is the cause of a change in velocity, but not vice

versa. If we integrate acceleration a over time, we obtain velocity v; that is, v= ∫ a dt.
Whenever an output of an element is the time integral of the input and the direction

of the cause-effect relation is not reversible, we say that the element exhibits integral
causality. We will see that integral causality constitutes a basic form of causality for

all physical systems.

Similar statements can be made about the relation between velocity and displace-

ment. Integration of velocity produces displacement x: x = ∫ v dt. Velocity is the cause

of displacement, but not vice versa.

Note that the mathematical relations describing integral causality can be reversed;

for example, we may write a = dv∕dt, but this does not mean that the cause-and-effect

relation can be reversed.

1.1.3 STATIC AND DYNAMIC ELEMENTS

When the present value of an element’s output depends only on the present value of its

input, we say the element is a static element. For example, the current flowing through

a resistor depends only on the present value of the applied voltage. The resistor is thus

a static element. However, because no physical element can respond instantaneously,

the concept of a static element is an approximation. It is widely used, however, because

it results in a simpler mathematical representation; that is, an algebraic representation

rather than one involving differential equations.

If an element’s present output depends on past inputs, we say it is a dynamic ele-
ment. For example, the present position of a bike depends on what its velocity has been

from the start.

In popular usage, the terms static and dynamic distinguish situations in which no

change occurs from those that are subject to changes over time. This usage conforms

to the preceding definitions of these terms if the proper interpretation is made. A static

element’s output can change with time only if the input changes and will not change

if the input is constant or absent. However, if the input is constant or removed from

a dynamic element, its output can still change. For example, if we stop pedaling, the

bike’s displacement will continue to change because of its momentum, which is due to

past inputs.

A dynamic system is one whose present output depends on past inputs. A static
system is one whose output at any given time depends only on the input at that time. A

static system contains all static elements. Any system that contains at least one dynamic

element must be a dynamic system. System dynamics, then, is the study of systems that

contain dynamic elements.

1.1.4 MODELING OF SYSTEMS

Table 1.1.1 contains a summary of the methodology that has been tried and tested by

the engineering profession for many years. These steps describe a general problem-

solving procedure. Simplifying the problem sufficiently and applying the appropriate
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Table 1.1.1 Steps in engineering problem solving.

1. Understand the purpose of the problem.
2. Collect the known information. Realize that some of it might turn out to be not needed.
3. Determine what information you must find.
4. Simplify the problem only enough to obtain the required information. State any assumptions

you make.
5. Draw a sketch and label any necessary variables.
6. Determine what fundamental principles are applicable.
7. Think generally about your proposed solution approach and consider other approaches before

proceeding with the details.
8. Label each step in the solution process.
9. If you use a program to solve the problem, hand check the results using a simple version of the

problem. Checking the dimensions and units, and printing the results of intermediate steps in
the calculation sequence can uncover mistakes.

10. Perform a “reality check” on your answer. Does it make sense? Estimate the range of the
expected result and compare it with your answer. Do not state the answer with greater
precision than is justified by any of the following:

a. The precision of the given information.
b. The simplifying assumptions.
c. The requirements of the problem.

Interpret the mathematics. If the mathematics produces multiple answers, do not discard some
of them without considering what they mean. The mathematics might be trying to tell you
something, and you might miss an opportunity to discover more about the problem.

fundamental principles is called modeling, and the resulting mathematical description

is called a mathematical model, or just a model. When the modeling has been finished,

we need to solve the mathematical model to obtain the required answer. If the model is

highly detailed, we may need to solve it with a computer program.

Modeling is the art of obtaining a quantitative description of a system or one of

its elements that is simple enough to be useful for making predictions and realistic

enough to trust those predictions. For example, consider a potato being heated in an

oven. The oven designer wants to design an oven that is powerful enough to bake a

potato within a prescribed time (Figure 1.1.5). Note that because the oven has yet to be

designed, we cannot do an experiment to obtain the answer. Potatoes vary in size and

shape, but a good estimate of the required oven power can be obtained by modeling

the potato as a sphere having the thermal properties of water. Then, using the ther-

mal systems methods given in Chapter 7, we can predict how long it will take to bake

the potato.

It often is necessary to choose between a very accurate but complicated model and

a simple but not so accurate model. Complicated models may be difficult to solve, or

they may require experimental data that are unavailable or hard to find. There usually

is no “right” model choice because it depends on the particular situation. We aim to

Oven

Potato

Ideal Actual

175°C

Water

Figure 1.1.5 A potato
modeled as a sphere of
water.
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choose the simplest model that yields adequate results. Just remember that the predic-

tions obtained from a model are no more accurate than the simplifying assumptions

made to develop the model. That is why we call modeling an art; it depends partly on

judgment obtained by experience.

The form of a mathematical model depends on its purpose. For example, design

of electrical equipment requires more than a knowledge of electrical principles. An

electric circuit can be damaged if its mounting board experiences vibration. In this

case, its force-deflection properties must be modeled. In addition, resistors generate

heat, and a thermal model is required to describe this process. Thus, we see that devices

can have many facets: thermal, mechanical, electrical, and so forth. No mathematical

model can deal with all these facets. Even if it could, it would be too complex, and thus

too cumbersome, to be useful.

For example, a map is a model of a geographic region. But if a single map contains

all information pertaining to the roads, terrain elevation, geology, population density,

and so on, it would be too cluttered to be useful. Instead, we select the particular type

of map required for the purpose at hand. In the same way, we select or construct a

mathematical model to suit the requirements of a particular study.

The examples in this text follow the steps in Table 1.1.1, although for compactness

the steps are usually not numbered. In each example, following the example’s title, there

is a problem statement that summarizes the results of steps 1 through 5. Steps 6 through

10 are described in the solution part of the example. To save space, some steps, such as

checking dimensions and units, are not always explicitly displayed. However, you are

encouraged to perform these steps on your own.

1.1.5 MATHEMATICAL METHODS

Because system dynamics deals with changes in time, mathematical models of dynamic

systems naturally involve differential equations. Therefore, we introduce differential

equation solution methods starting in this chapter. Additional methods, such as those

that make use of computers, are introduced in subsequent chapters.

1.1.6 CONTROL SYSTEMS

Often dynamic systems require a control system to perform properly. Thus, proper

control system design is one of the most important objectives of system dynamics.

Microprocessors have greatly expanded the applications for control systems. These

new applications include robotics, mechatronics, micromachines, precision engineer-

ing, active vibration control, active noise cancellation, and adaptive optics. Recent

technological advancements mean that many machines now operate at high speeds and

high accelerations. It is therefore now more often necessary for engineers to pay more

attention to the principles of system dynamics. Starting in Chapter 10, we apply these

principles to control system design.

1.1.7 APPLICATIONS IN MECHANICAL SYSTEMS

Mechanical systems are loosely defined as those whose operating principles are pri-

marily Newton’s laws of motion. The bicycle is an example of a mechanical system.

Chapters 3 and 4 deal with mechanical systems. The topic of mechanical vibrations

covers the oscillations of machines and structures due either to their own inherent flex-

ibility or to the action of an external force or motion. This is treated in Chapter 13.
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Figure 1.1.6 A vehicle suspension system.
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Figure 1.1.7 A robot arm.
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One of our major theme applications in mechanical systems is vehicle dynamics.

This topic has received renewed importance for reasons related to safety, energy effi-

ciency, and passenger comfort. Of major interest under this topic is the design of vehi-

cle suspension systems, whose elements include various types of springs and shock ab-

sorbers (Figure 1.1.6). Active suspension systems, whose characteristics can be changed

under computer control, and vehicle-dynamics control systems are undergoing rapid

development, and their design requires an understanding of system dynamics.

1.1.8 APPLICATIONS IN ELECTRICAL AND
ELECTROMECHANICAL SYSTEMS

Electromechanical systems contain both mechanical elements and electrical elements

such as electric motors. Two common applications of system dynamics in electrome-

chanical systems are in (1) motion-control systems and (2) vehicle dynamics. There-

fore, we will use these applications as major themes in many of our examples and

problems. Chapter 6 introduces electrical and electromechanical systems.

Figure 1.1.7 shows a robot arm, whose motion must be properly controlled to move

an object to a desired position and orientation. To do this, each of the several motors

and drive trains in the arm must be adequately designed to handle the load, and the

motor speeds and angular positions must be properly controlled. Figure 1.1.8 shows

a typical motor and drive train for one arm joint. Knowledge of system dynamics is

essential to design these subsystems and to control them properly.

Mobile robots are another motion-control application, but motion-control applica-

tions are not limited to robots. Figure 1.1.9 shows the mechanical drive for a conveyor

system. The motor, the gears in the speed reducer, the chain, the sprockets, and the

drive wheels all must be properly selected, and the motor must be properly controlled

for the system to work well. In subsequent chapters we will develop models of these

components and use them to design the system and analyze its performance.
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Figure 1.1.8 Mechanical drive for a robot arm joint.
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Figure 1.1.9 Mechanical drive for a conveyor system.
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1.1.9 APPLICATIONS IN FLUID SYSTEMS

A fluid system is one whose operation depends on the flow of a fluid. If the fluid is

incompressible, that is, if its density does not change appreciably with pressure changes,

we call it a liquid, or a hydraulic fluid. On the other hand, if the fluid is compressible,

that is, if its density does change appreciably with pressure changes, we call it a gas, or

a pneumatic fluid.

Figure 1.1.10 shows a commonly seen backhoe. The bucket, forearm, and upper

arm are each driven by a hydraulic servomotor. A cutaway view of such a motor is

shown in Figure 1.1.11. We will analyze its behavior in Chapter 7. Compressed air

Figure 1.1.10 A backhoe.
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controls
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lines

Figure 1.1.11 A hydraulic servomotor.
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Table 1.1.2 Steps for developing a computer solution.

1. State the problem concisely.
2. Specify the data to be used by the program. This is the “input.”
3. Specify the information to be generated by the program. This is the “output.”
4. Work through the solution steps by hand or with a calculator; use a simpler set of data

if necessary.
5. Write and run the program.
6. Check the output of the program with your hand solution.
7. Run the program with your input data and perform a reality check on the output.
8. If you will use the program as a general tool in the future, test it by running it for a range of

reasonable data values, and perform a reality check on the results. Document the program with
comment statements, flow charts, pseudo-code, or whatever else is appropriate.

cylinders and the common storm door closer are examples of pneumatic systems, and

we encounter them in Chapter 7.

1.1.10 APPLICATIONS IN THERMAL SYSTEMS

A thermal system is one whose behavior depends primarily on the exchange of heat.

The oven-potato application we saw earlier is an example of a thermal system. Many

thermal systems involve fluid flow, such as with a steam engine or an air conditioner,

and so we often speak of thermo-fluid systems. These examples also have mechanical

components such as pistons, and so we could refer to them as thermo-fluid-mechanical

systems, although we rarely use such cumbersome terminology. The designation as

thermal, fluid, or mechanical depends on what aspect of the system we are analyzing.

Thermal systems are first treated in Chapter 7, with more applications covered in later

chapters.

1.1.11 COMPUTER METHODS

The computer methods used in this text are based on MATLAB and Simulink. R©1 If

you are unfamiliar with MATLAB, Appendix D on the textbook website contains a

thorough introduction to the program. No prior experience with Simulink is required;

we will introduce the necessary methods as we need them. For the convenience of those

who prefer to use a software package other than MATLAB or Simulink, we have placed

all the MATLAB and Simulink material in optional sections at the end of each chapter.

They can be skipped without affecting your understanding of the following chapters. If

you use a program, such as MATLAB, to solve a problem, follow the steps shown in

Table 1.1.2.

1.2 UNITS
In this book we use two systems of units, the FPS system and the metric SI. The com-

mon system of units in business and industry in English-speaking countries has been

the foot-pound-second (FPS) system. This system is also known as the U.S. customary

system or the British Engineering system. Much engineering work in the United States

has been based on the FPS system, and some industries continue to use it. The metric

Système International d’Unités (SI) nevertheless is becoming the worldwide standard.

1Simulink is a registered trademark of The MathWorks, Inc.
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Until the changeover is complete, engineers in the United States will have to be familiar

with both systems.

In our examples, we will use SI and FPS units in the hope that the student will

become comfortable with both. Other systems are in use, such as the meter-kilogram-

second (mks) and centimeter-gram-second (cgs) metric systems and the British system,

in which the mass unit is a pound. We will not use these, in order to simplify our cov-

erage and because FPS and SI units are the most common in engineering applications.

We now briefly summarize these two systems.

1.2.1 FPS UNITS

The FPS system is a gravitational system. This means that the primary variable is force,

and the unit of mass is derived from Newton’s second law. The pound is selected as the

unit of force and the foot and second as units of length and time, respectively. From

Newton’s second law of motion, force equals mass times acceleration, or

f = ma (1.2.1)

where f is the net force acting on the mass m and producing an acceleration a. Thus,

the unit of mass must be

mass = force

acceleration
=

pound

foot/(second)2

This mass unit is named the slug.

Through Newton’s second law, the weight W of an object is related to the object

mass m and the acceleration due to gravity, denoted by g, as follows: W =mg. At the

surface of the earth, the standard value of g in FPS units is g = 32.2 ft /sec2.

Energy has the dimensions of mechanical work; namely, force times displacement.

Therefore, the unit of energy in this system is the foot-pound (ft-lb). Another energy unit

in common use for historical reasons is the British thermal unit (Btu). The relationship

between the two is given in Table 1.2.1. Power is the rate of change of energy with time,

and a common unit is horsepower. Finally, temperature in the FPS system can be

expressed in degrees Fahrenheit or in absolute units, degrees Rankine.

1.2.2 SI UNITS

The SI metric system is an absolute system, which means that the mass is chosen as the

primary variable, and the force unit is derived from Newton’s law. The meter and the

Table 1.2.1 SI and FPS units.

Unit name and abbreviation

Quantity SI Unit FPS Unit
Time second (s) second (sec)
Length meter (m) foot (ft)
Force newton (N) pound (lb)
Mass kilogram (kg) slug
Energy joule (J) foot-pound (ft-lb),

Btu (= 778 ft-lb)
Power watt (W) ft-lb/sec,

horsepower (hp)
Temperature degrees Celsius (◦C), degrees Fahrenheit (◦F),

degrees Kelvin (K) degrees Rankine (◦R)
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Table 1.2.2 Unit conversion factors.

Length 1 m = 3.281 ft 1 ft = 0.3048 m
1 mile = 5280 ft 1 km = 1000 m

Speed 1 ft /sec = 0.6818 mi /hr 1 mi /hr = 1.467 ft /sec
1 m/s = 3.6 km/h 1 km/h = 0.2778 m/s
1 km/hr = 0.6214 mi /hr 1 mi /hr = 1.609 km/h

Force 1 N = 0.2248 lb 1 lb = 4.4484 N
Mass 1 kg = 0.06852 slug 1 slug = 14.594 kg
Energy 1 J = 0.7376 ft-lb 1 ft-lb = 1.3557 J
Power 1 hp = 550 ft-lb /sec 1 hp = 745.7 W

1 W = 1.341 × 10−3 hp
Temperature T◦C = 5 (T◦F− 32)∕9 T◦F = 9T◦C∕5 + 32

second are selected as the length and time units, and the kilogram is chosen as the mass

unit. The derived force unit is called the newton. In SI units the common energy unit

is the newton-meter, also called the joule, while the power unit is the joule/second, or

watt. Temperatures are measured in degrees Celsius, ◦C, and in absolute units, which

are degrees Kelvin, K. The difference between the boiling and freezing temperatures of

water is 100◦C, with 0◦C being the freezing point.

At the surface of the earth, the standard value of g in SI units is g= 9.81 m/s2.

Table 1.2.2 gives the most commonly needed factors for converting between the

FPS and the SI systems.

1.2.3 OSCILLATION UNITS

There are three commonly used units for frequency of oscillation. If time is measured

in seconds, frequency can be specified as radians /second or as hertz, abbreviated Hz.

One hertz is one cycle per second (cps). The relation between cycles per second f
and radians per second 𝜔 is 2𝜋f =𝜔. For sinusoidal oscillation, the period P, which is

the time between peaks, is related to frequency by P= 1∕f = 2𝜋∕𝜔. The third way of

specifying frequency is revolutions per minute (rpm). Because there are 2𝜋 radians per

revolution, one rpm = (2𝜋∕60) radians per second.

1.3 DEVELOPING LINEAR MODELS
A linear model of a static element has the form y=mx+ b, where x is the input and y
is the output of the element. As we will see in Chapter 2, solution of dynamic models

to predict system performance requires solution of differential equations. Differential

equations based on linear models of the system elements are easier to solve than ones

based on nonlinear models. Therefore, when developing models we try to obtain a

linear model whenever possible. Sometimes the use of a linear model results in a loss

of accuracy, and the engineer must weigh this disadvantage with advantages gained by

using a linear model. In this section, we illustrate some ways to obtain linear models.

1.3.1 DEVELOPING LINEAR MODELS FROM DATA

If we are given data on the input-output characteristics of a system element, we can first

plot the data to see whether a linear model is appropriate, and if so, we can

extract a suitable model. Example 1.3.1 illustrates a common engineering problem—

the estimation of the force-deflection characteristics of a cantilever support beam.
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EXAMPLE 1.3.1 A Cantilever Beam Deflection Model

▪ Problem
The deflection of a cantilever beam is the distance its end moves in response to a force applied

at the end (Figure 1.3.1). This distance is called the deflection and it is the output variable.

The applied force is the input. The following table gives the measured deflection x that was

produced in a particular beam by the given applied force f . Plot the data to see whether a linear

relation exists between f and x.

Force f (lb) 0 100 200 300 400 500 600 700 800

Deflection x (in.) 0 0.15 0.23 0.35 0.37 0.5 0.57 0.68 0.77

▪ Solution
The plot is shown in Figure 1.3.2. Common sense tells us that there must be zero beam deflec-

tion if there is no applied force, so the curve describing the data must pass through the origin.

The straight line shown was drawn by aligning a straightedge so that it passes through the origin

Figure 1.3.1 Measurement
of beam deflection.

Dial Gauge

Weight f

Beam
Deflection x

Figure 1.3.2 Plot of beam
deflection versus applied
force.
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and near most of the data points (note that this line is subjective; another person might draw

a different line). The data lie close to a straight line, so we can use the linear function x= af
to describe the relation. The value of the constant a can be determined from the slope of the

line. Choosing the origin and the last data point to find the slope, we obtain

a = 0.78 − 0

800 − 0
= 9.75 × 10−4 in./lb

As we will see in Chapter 4, this relation is usually written as f = kx, where k is called the

beam stiffness. Thus, k = 1∕a = 1025 lb/in.

Once we have discovered a functional relation that describes the data, we can use

it to make predictions for conditions that lie within the range of the original data. This

process is called interpolation. For example, we can use the beam model to estimate the

deflection when the applied force is 550 lb. We can be fairly confident of this prediction

because we have data below and above 550 lb and we have seen that our model describes

these data very well.

Extrapolation is the process of using the model to make predictions for condi-

tions that lie outside the original data range. Extrapolation might be used in the beam

application to predict how much force would be required to bend the beam 1.2 in. We

must be careful when using extrapolation, because we usually have no reason to believe

that the mathematical model is valid beyond the range of the original data. For exam-

ple, if we continue to bend the beam, eventually the force is no longer proportional to

the deflection, and it becomes much greater than that predicted by the linear model.

Extrapolation has a use in making tentative predictions, which must be backed up later

on by testing.

In some applications, the data contain so much scatter that it is difficult to identify

an appropriate straight line. In such cases, we must resort to a more systematic and

objective way of obtaining a model. This topic is treated in Appendix C.

1.3.2 LINEARIZATION

Not all element descriptions are in the form of data. Often we know the analytical form

of the model, and if the model is nonlinear, we can obtain a linear model that is an ac-

curate approximation over a limited range of the independent variable. Examples 1.3.2

and 1.3.3 illustrate this technique, which is called linearization.

Linearization of the Sine Function EXAMPLE 1.3.2

▪ Problem
We will see in Chapter 3 that the models of many mechanical systems involve the sine function

sin 𝜃, which is nonlinear. Obtain three linear approximations of f (𝜃)= sin 𝜃, one valid near

𝜃 = 0, one near 𝜃 = 𝜋∕3 rad (60◦), and one near 𝜃 = 2𝜋∕3 rad (120◦).

▪ Solution
The essence of the linearization technique is to replace the plot of the nonlinear function with

a straight line that passes through the reference point and has the same slope as the nonlinear

function at that point. Figure 1.3.3 shows the sine function and the three straight lines obtained

with this technique. Note that the slope of the sine function is its derivative, d sin 𝜃∕d𝜃 = cos 𝜃,

and thus the slope is not constant but varies with 𝜃.
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Figure 1.3.3 Three
linearized models of the
sine function.
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Consider the first reference point, 𝜃 = 0. At this point the sine function has the value

sin 0= 0, the slope is cos 0= 1, and thus the straight line passing through this point with a

slope of 1 is f (𝜃)= 𝜃. This is the linear approximation of f (𝜃)= sin 𝜃 valid near 𝜃 = 0, line

A in Figure 1.3.3. Thus, we have derived the commonly seen small-angle approximation

sin 𝜃 ≈ 𝜃.

Next consider the second reference point, 𝜃 = 𝜋∕3 rad. At this point the sine function

has the value sin 𝜋∕3 = 0.866, the slope is cos𝜋∕3 = 0.5, and thus the straight line passing

through this point with a slope of 0.5 is f (𝜃) = 0.5(𝜃 − 𝜋∕3)+ 0.866, line B in Figure 1.3.3.

This is the linear approximation of f (𝜃) = sin 𝜃 valid near 𝜃 = 𝜋∕3.

Now consider the third reference point, 𝜃 = 2𝜋∕3 rad. At this point the sine function has

the value sin 2𝜋∕3 = 0.866, the slope is cos 2𝜋∕3 = −0.5, and thus the straight line passing

through this point with a slope of −0.5 is f (𝜃) = −0.5(𝜃−2𝜋∕3)+0.866, line C in Figure 1.3.3.

This is the linear approximation of f (𝜃) = sin 𝜃 valid near 𝜃 = 2𝜋∕3.

In Example 1.3.2 we used a graphical approach to develop the linear approxima-

tion. The linear approximation can also be developed with an analytical approach based

on the Taylor series. The Taylor series represents a function f (𝜃) in the vicinity of 𝜃 = 𝜃r
by the expansion

f (𝜃) = f (𝜃r) +
(

df
d𝜃

)
𝜃=𝜃r

(𝜃 − 𝜃r) +
1

2

(
d2f
d𝜃2

)
𝜃=𝜃r

(𝜃 − 𝜃r)
2 +⋯

+ 1

k!

(
dkf
d𝜃k

)
𝜃=𝜃r

(𝜃 − 𝜃r)
k +⋯ (1.3.1)

Consider the nonlinear function f (𝜃), which is sketched in Figure 1.3.4. Let

[𝜃r, f (𝜃r)] denote the reference operating condition of the system. A model that is lin-

ear can be obtained by expanding f (𝜃) in a Taylor series near this point and truncating
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Figure 1.3.4 Graphical
interpretation of function
linearization.

the series beyond the first-order term. If 𝜃 is “close enough” to 𝜃r, the terms involving

(𝜃 − 𝜃r)
i for i≥ 2 are small compared to the first two terms in the series. The result is

f (𝜃) = f (𝜃r) +
(

df
d𝜃

)
r
(𝜃 − 𝜃r) (1.3.2)

where the subscript r on the derivative means that it is evaluated at the reference point.

This is a linear relation. To put it into a simpler form, let m denote the slope at the

reference point.

m =
(

df
d𝜃

)
r

(1.3.3)

Let y denote the difference between f (𝜃) and the reference value f (𝜃r).

y = f (𝜃) − f (𝜃r) (1.3.4)

Let x denote the difference between 𝜃 and the reference value 𝜃r.

x = 𝜃 − 𝜃r (1.3.5)

Then (1.3.2) becomes

y = mx (1.3.6)

The geometric interpretation of this result is shown in Figure 1.3.4. We have replaced

the original function f (𝜃) with a straight line passing through the point [𝜃r, f (𝜃r)] and

having a slope equal to the slope of f (𝜃) at the reference point. Using the (y, x) coordi-

nates gives a zero intercept, and simplifies the relation.

Linearization of a Square-Root Model EXAMPLE 1.3.3

▪ Problem
We will see in Chapter 7 that the models of many fluid systems involve the square-root function√

h, which is nonlinear. Obtain a linear approximation of f (h) =
√

h valid near h = 9.




